97 research outputs found

    Antibody-mediated rejection of solid-organ allografts

    Get PDF
    To the editor: the comprehensive review article by Loupy and Lefaucheur (Sept. 20 issue)1 on antibody-mediated rejection describes major advances in understanding the pathophysiological process and diagnosis of antibody-mediated rejection, but successful treatment is still limited to the acute forms of antibody-mediated rejection.2 Allograft loss eventually occurs in the majority of patients in whom true pathogenic donor-specific anti-HLA antibodies develop.3 This is frustrating for both clinicians and patients because even treatments administered at early stages of the disease are not effective. It is quite obvious that the best strategy to minimize the risk of donor-specific antibodies is to improve the level of HLA matching between the donor and recipient.4 This point was omitted in the article

    An exonic switch regulates differential accession of microRNAs to the Cd34 transcript in aterosclerosis progression

    Get PDF
    Background: CD34+ Endothelial Progenitor Cells (EPCs) play an important role in the recovery of injured endothelium and contribute to atherosclerosis (ATH) pathogenesis. Previously we described a potential atherogenic role for miR-125 that we aimed to confirm in this work. Methods: Microarray hybridization, TaqMan Low Density Array (TLDA) cards, qPCR, and immunohistochemistry (IHC) were used to analyze expression of the miRNAs, proteins and transcripts here studied. Results: Here we have demonstrated an increase of resident CD34-positive cells in the aortic tissue of human and mice during ATH progression, as well as the presence of clusters of CD34-positive cells in the intima and adventitia of human ATH aortas. We introduce miR-351, which share the seed sequence with miR-125, as a potential effector of CD34. We show a splicing event at an internal/cryptic splice site at exon 8 of the murine Cd34 gene (exonic-switch) that would regulate the differential accession of miRNAs (including miR-125) to the coding region or to the 3'UTR of Cd34. Conclusions: We introduce new potential mediators of ATH progression (CD34 cell-clusters, miR-351), and propose a new mechanism of miRNA action, linked to a cryptic splicing site in the target-host gene, that would regulate the differential accession of miRNAs to their cognate binding sites

    Design and methodology of the screening for CKD among older patients across Europe (SCOPE) study: a multicenter cohort observational study

    Get PDF
    Background: Decline of renal function is common in older persons and the prevalence of chronic kidney disease (CKD) is rising with ageing. CKD affects different outcomes relevant to older persons, additionally to morbidity and mortality which makes CKD a relevant health burden in this population. Still, accurate laboratory measurement of kidney function is under debate, since current creatinine-based equations have a certain degree of inaccuracy when used in the older population. The aims of the study are as follows: to assess kidney function in a cohort of 75+ older persons using existing methodologies for CKD screening; to investigate existing and innovative biomarkers of CKD in this cohort, and to align laboratory and biomarker results with medical and functional data obtained from this cohort. The study was registered at ClinicalTrials.gov, identifier NCT02691546, February 25th 2016. Methods/design: An observational, multinational, multicenter, prospective cohort study in community dwelling persons aged 75 years and over, visiting the outpatient clinics of participating institutions. The study will enroll 2450 participants and is carried out in Austria, Germany, Israel, Italy, the Netherlands, Poland and Spain. Participants will undergo clinical and laboratory evaluations at baseline and after 12 and 24 months-follow-up. Clinical evaluation also includes a comprehensive geriatric assessment (CGA). Local laboratory will be used for 'basic' parameters (including serum creatinine and albumin-to-creatinine ratio), whereas biomarker assessment will be conducted centrally. An intermediate telephone follow-up will be carried out at 6 and 18 months. Discussion: Combining the use of CGA and the investigation of novel and existing independent biomarkers within the SCOPE study will help to provide evidence in the development of European guidelines and recommendations in the screening and management of CKD in older people

    ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease

    Full text link
    Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance

    Unveiling ncRNA regulatory axes in atherosclerosis progression

    Get PDF
    Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks

    Chronic Kidney Allograft Disease: New Concepts and Opportunities

    Get PDF
    Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation is the best option for those patients requiring renal replacement therapy. Therefore, there is a significant number of patients living with a functioning kidney allograft. However, progressive kidney allograft functional deterioration remains unchanged despite of major advances in the field. After the first post-transplant year, it has been estimated that this chronic allograft damage may cause a 5% graft loss per year. Most studies focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic interventions focus on those modifiable factors associated with chronic kidney allograft disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure and to identify recurrence of primary renal disease early. On the other hand, control of risk factors for chronic disease progression are particularly relevant as kidney transplantation is inherently associated with renal mass reduction. However, despite progress in pathophysiology and interventions, clinical advances in terms of long-term kidney allograft survival have been subtle. New approaches are needed and probably a holistic view can help. Chronic kidney allograft deterioration is probably the consequence of damage from various etiologies but can be attenuated by kidney repair mechanisms. Thus, besides immunological and other mechanisms of damage, the intrinsic repair kidney graft capacity should be considered to generate new hypothesis and potential therapeutic targets. In this review, the critical risk factors that define CKaD will be discussed but also how the renal mechanisms of regeneration could contribute to a change chronic kidney allograft disease paradigm

    Exploring macrophage cell therapy on diabetic kidney disease

    Get PDF
    Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐ NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytoki nes, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu

    Treatment for severe COVID-19 with a biomimetic sorbent haemoperfusion device in patients on haemodialysis

    Get PDF
    Haemodialysis (HD) patients present more morbidity and mortality risk in coronavirus disease 2019 (COVID-19). In patients who may develop severe symptoms, the process called 'viral sepsis' seems to be a crucial mechanism. In those cases, the HD procedure provides an excellent tool to explore the benefit of some extracorporeal therapies. We reported the outcome of four HD patients with severe COVID-19 treated with Seraph®100 haemoperfusion (HP) device. Three of the four cases presented a good clinical response after HP. In conclusion, the treatment with Seraph®100 device may be a simultaneous treatment to improve HD patients with severe acute respiratory syndrome coronavirus 2

    Decreased kidney graft survival in low immunological risk patients showing inflammation in normal protocol biopsies

    Full text link
    Introduction The pros and cons for implementing protocol biopsies (PB) after kidney transplantation are still a matter of debate. We aimed to address the frequency of pathological findings in PB, to analyze their impact on long-term graft survival (GS) and to analyze the risk factors predicting an abnormal histology. Methods We analyzed 946 kidney PB obtained at a median time of 6.5 (±2.9) months after transplantation. Statistics included comparison between groups, Kaplan-Meier and multinomial logistic regression analysis. Results and Discussion PB diagnosis were: 53.4% normal; 46% IFTA; 12.3% borderline and 4.9% had subclinical acute rejection (SCAR). Inflammation had the strongest negative impact on GS. Therefore we split the cases into: "normal without inflammation", "normal with inflammation", "IFTA without inflammation", "IFTA with inflammation" and "rejection" (including SCAR and borderline). 15-year GS in PB diagnosed normal with inflammation was significantly decreased in a similar fashion as in rejection cases. Among normal biopsies, inflammation increased significantly the risk of 15-y graft loss (P = 0.01). Variables that predicted an abnormal biopsy were proteinuria, previous AR and DR-mismatch. Conclusion We conclude that inflammation in normal PB is associated with a significantly lower 15-y GS, comparable to rejection or IFTA with inflammation

    Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model

    Get PDF
    Background/Aims: Alternatively activated macrophages (AAM) have regenerative and anti-inflammatory characteristics. Here, we sought to evaluate whether AAM cell therapy reduces renal inflammation and fibrosis in the unilateral ureteral obstruction (UUO) mice model. Methods: We stabilized macrophages by adenoviral vector NGAL (Neutrophil gelatinase-associated lipocalin-2) and infused them into UUO mice. To ascertain whether macrophages were capable of reaching the obstructed kidney, macrophages were stained and detected by in vivo cell tracking. Results: We demonstrated that some infused macrophages reached the obstructed kidney and that infusion of macrophages overexpressing NGAL was associated with reduced kidney interstitial fibrosis and inflammation. This therapeutic effect was mainly associated with the phenotype and function preservation of the transferred macrophages isolated from the obstructed kidney Conclusions: Macrophage plasticity is a major hurdle for achieving macrophage therapy success in chronic nephropathies and could be overcome by transferring lipocalin-2
    corecore